- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources1
- Resource Type
-
0000000000010000
- More
- Availability
-
01
- Author / Contributor
- Filter by Author / Creator
-
-
Arya, Garima (1)
-
Bondy-Denomy, Joseph (1)
-
Cai, Yanyao (1)
-
Deng, Jun (1)
-
Duerkop, Breck A (1)
-
Duncan, Olivia K (1)
-
Fedorova, Iana (1)
-
Gerdt, Joseph P (1)
-
Le, Shuai (1)
-
Liang, Haihua (1)
-
Miraj, Gause (1)
-
Sabonis, Dziugas (1)
-
Shi, Yun (1)
-
Tamulaitiene, Giedre (1)
-
Ve, Thomas (1)
-
Zang, Zhiyu (1)
-
Zhang, Chengqian (1)
-
Zhu, Yuhao (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract The rise of antibiotic resistance motivates a revived interest in phage therapy. However, bacteria possess dozens of anti-bacteriophage immune systems that confer resistance to therapeutic phages. Chemical inhibitors of these anti-phage immune systems could be employed as adjuvants to overcome resistance in phage-based therapies. Here, we report that anti-phage systems can be selectively inhibited by small molecules, thereby sensitizing phage-resistant bacteria to phages. We discovered a class of chemical inhibitors that inhibit the type II Thoeris anti-phage immune system. These inhibitors block the biosynthesis of a histidine-ADPR intracellular ‘alarm’ signal by ThsB and prevent ThsA from arresting phage replication. These inhibitors promiscuously inhibit type II Thoeris systems from diverse bacteria—including antibiotic-resistant pathogens. Chemical inhibition of the Thoeris defense improved the efficacy of a model phage therapy against a phage-resistant strain ofP. aeruginosain a mouse infection, suggesting a therapeutic potential. Furthermore, these inhibitors may be employed as chemical tools to dissect the importance of the Thoeris system for phage defense in natural microbial communities.more » « lessFree, publicly-accessible full text available February 21, 2026
An official website of the United States government
